Technology to Control Excessive Occlusal Contact Force:

Enhancing Implant Restoration Longevity

Authored by Christopher J. Stevens, DDS

Upon successful completion of this CE activity, 2 CE credit hours may be awarded.
Technology to Control Excessive Occlusal Contact Force: Enhancing Implant Restoration Longevity

Effective Date: 1/01/2016 Expiration Date: 1/01/2019

About the Author

Dr. Stevens, a graduate of the Marquette University School of Dentistry in Milwaukee, is a member of the ADA, the Wisconsin Dental Association, and the Dane County Dental Society. He was also a Fellow of the International College of Cranio-Mandibular Orthopedics and a Diplomate in the American Academy of Pain Management. He co-founded the Multi-Disciplinary Pain Clinic at the Medical College of Wisconsin and maintains a teaching center, the Center for Advanced Studies of Functional and Restorative Esthetics, and a general dental practice in Sun Prairie, Wis. He is an international speaker on the subjects of smile enhancement, principles of occlusion, full-mouth restoration, and diagnosis and treatment of temporomandibular disorders (TMD). He has been an active lecturer for more than 2 decades and has spoken to thousands of care providers, including dentists, physicians, chiropractors, and physical therapists. Since 1991, he has been instructing doctors and their teams on the use of computer-enhanced electrodiagnostic equipment in dentistry. Widely accepted applications for these instruments have been found in diagnosis and treatment of TMD, 3-D mandibular repositioning, principles of occlusion, and occlusal management processes. He can be reached via email at cjs@thebestsmiles.net.

Disclosure: Dr. Stevens is a lecturer for Tekscan and Implant Direct.

INTRODUCTION

Fortunately, implants and implant-supported prostheses continue to demonstrate 90% to 95% 5-year survival rates.\(^1\) Despite this fact, occlusal forces applied to an implant prosthesis have been shown to be a potentially destructive factor in shortening the longevity of any implant prosthesis. Implant deosseointegration and material failures have been attributed to excessive occlusal loading to dental implants and the prosthesis.\(^2\)^\(^3\) However, the role of occlusion in the loss of bone following placement of an implant prosthesis is still a debatable topic.\(^4\)

This article will discuss occlusal stress in regards to crestal peri-implant bone loss while reviewing the current concepts of occlusion to possibly employ when dental implants are restored. Three clinical cases will be presented that demonstrate the currently available methods to control the magnitude and time duration that aberrant occlusal forces are placed on implant prostheses.

Literature Review

Several studies have explored both the microbiological factors and occlusal overload in relation to implant failure. Esposito et al\(^5\) suggested that excessive surgical trauma in addition to an impaired healing ability, premature loading, and infection were the most common causes of early implant loss. They suggested that progressive chronic marginal infection (peri-implantitis) and occlusal overload in conjunction with host characteristics may be a primary reason for late failures. Heydenrijk et al\(^6\) concluded from significant data that bacteria cause the disease (peri-implantitis), while the individual’s genetic makeup and environmental influences determine the severity of the disease. Others\(^7\)^\(^9\) have concluded that implant failure is multifactorial, and often has multiple causative agents.

Excessive loading, premature loading, or incorrectly vectored forces can place undesirable stresses on an implant restoration, ultimately resulting in failure. Misch\(^10\) reported that improper occlusion with increased localized forces frequently results in prosthesis complications that can involve the implant and the supportive bone (loosening of the implant and reduction in crestal...
bone height). He stated10 that appropriate timing and directional force loading on an implant-supported prosthesis aids in a desirable and physiologic outcome.

The association between crestal bone loss and excessive occlusal forces does not exclude the importance of other factors, such as microgaps between the implant and the abutment, and bacterial infection. Several investigators feel that bacterial infection is necessary for implant failure, although occlusion is recognized as a co-factor.4-7 Saadoun et al11 described how excessive occlusal forces on implants when combined with microbial infection can cause bone loss and implant failure.

Various studies12,13 have identified how excessive occlusal force is directly related to bone loss, whereby occlusal forces transmitted to the bone-implant interface through the implant prosthesis can strain the interface directly. Quirynen et al12 evaluated 93 patients with various implant-retained restorations and concluded the amount of crestal bone loss was directly associated with occlusal loading. In a clinical report by Leung et al,13 implant bone loss was associated with prosthesis hyperocclusion. Following removal of the prosthesis, the bony defect resolved, and when the prosthesis was replaced with an appropriate occlusal environment, bone height remained stable throughout time. This report13 described how an association exists between excessive occlusal forces and bone loss, and suggested that the bone loss may reverse when the occlusion is corrected.

An example of bone loss reversal was demonstrated by Stevens14 using time-delayed occlusal loading. By adjusting the timing order on a distal extension implant prosthesis that was losing bone, such that the implant occlusal contacts occurred later than the adjacent natural teeth, the lost bone was regenerated.14

Occlusal Management

When adjusting occlusion, clinicians typically have 2 tools at their disposal—articulating paper and patient feedback—both of which have significant limitations. Articulating paper marks on teeth demonstrate forensically that contact occurred, such that when (and if) ink transfer occurs, the paper shows the location of the contact. However, the marks do not tell the clinician when the contact occurred, how long the contact was present, or the contact’s degree of applied occlusal force. Unfortunately, the size of the ink transfer is often misinterpreted. It has been advocated that a large contact area equals a heavy occlusal force, but it is important to emphasize that when considering the size of a contact, a large mark may in fact disperse the force better than do smaller contacts.

Patient feedback is a subjective and often unreliable method for determining occlusal balance. Because implants do not have a periodontal ligament, and therefore do not have proprioceptors and mechanoreceptors, human perception of occlusal force and contact timing is diminished. A 1995 study by Hammerle et al15 indicated that a patient’s perception of occlusal contact force on an implant-supported prosthesis is one eighth as reliable than when perceiving forces on natural teeth.

The proper occlusal adjustment of implant prostheses is complicated when there is a mixed implant-natural tooth
Technology to Control Excessive Occlusal Contact Force

occlusal scheme. Without periodontal ligament fibers, implants demonstrate minimal depressability in the alveolar bone when compared to a healthy tooth that experiences far more vertical depression. Parfitt16 found that nonmobile posterior teeth depress approximately 28 μm vertically, and can move 56 to 75 μm laterally. In contrast, Sekine et al17 found that well-integrated endosteal implants depress vertically 5 μm, and move laterally 12 to 66 μm.

Since the implant-retained prosthesis moves less than natural teeth, simultaneous occlusal loading of natural teeth and an implant prosthesis within the same quadrant may result in the implant prosthesis bearing more of the occlusal load than the more depressible natural teeth. This load-bearing difference has led Misch and Bides18 and Kim et al19 to both suggest implants and teeth be kept independent of one another, with the implants placed into hypo-occlusion. Additionally, Hämmerle et al15 reported the patient may not be able to recognize that increased force can be placed on an implant prosthesis. When neither the clinician nor the patient recognizes excessive occlusal forces on implant restorations, the degree of osseointegration, the crestal bone height stability, and the long-term prosthesis success can all be impacted.

In an effort to prevent excessive forces from being applied to an implant prosthesis, Kerstein20,21 and Kirveskari22 proposed that a quantifiable time (and force) delay be implemented occlusally, to allow the natural teeth to occlude in advance of the implant prosthesis. The natural teeth would then undergo depression into the periodontal ligament prior to the time occlusal loading on the implant prosthesis would initiate.20-22 With this occlusal scheme, the applied force would then be absorbed by both the natural teeth and the implant prosthesis. However, it is important that the time delay be short enough so that the implant prosthesis is actually functional, rather than become a highly refined, aesthetic space maintainer.21,22

Achieving a quantifiable time delay requires employing occlusal force and timing measurement technology to the occlusal contact pattern (T-Scan version 8 [Tekscan]). The T-Scan sensor

Figure 6. Still frame of the T-Scan movie. Note that at just 42% of total force application, the prosthesis is subjected to both early and high force.

Figure 7. Advancing the movie approximately 0.02 seconds reveals the implant is still being subjected to the high early force.

Figure 8. Playing the movie forward another 0.03 seconds shows the adjacent teeth have finally begun to absorb occlusal force to a similar degree as the prosthesis.
Technology to Control Excessive Occlusal Contact Force

(Figure 1) is nominally 90 µm thick and contains approximately 1,750 sensels of 0.05 mm² in size, which are surrounded by conductive ink that together can discern 256 differing levels of applied occlusal force.23-28 The recording handle scans the sensels and digitizes their voltage outputs at a rate of 100 to 300 frames/second. This allows measurement of not only the relative force at each contact point within the arch, but also the onset and duration of each contact, with 0.10- to 0.03-second resolution. Consequently, T-Scan recordings provide the restorative dentist with a precise means of determining the time order of the relative contact forces as they evolve sequentially on an implant prosthesis and the surrounding natural teeth. The data can be stored on a computer’s hard drive for subsequent analysis in a video format referred to as a “movie.”

CASE REPORTS

Case 1
The first case demonstrates the high potential of creating a “no-occlusion” scheme when clinicians attempt to create hypo-occlusion as described by Misch and Bides18 and Kim et al.19 This patient presented with an endodontically treated tooth No. 19 that experienced a subsequent root fracture. The tooth was extracted, and following appropriate healing, the No. 19 site was implanted with a 5.2-mm diameter, 11.5-mm length Legacy 3 (Implant Direct) implant. The cover screw and 2-mm extender included with the Legacy 3 implant were utilized as the healing abutment during integration, after which prosthetic impressions were completed and an abutment and restoration were seated (Figure 2).

A single T-Scan movie frame is shown in Figure 3, where the desktop’s left side is a representation of the maxillary arch, known as the 2-D ForceView, which displays all the relative forces applied to the teeth and the implant prosthesis, with blue representing low relative force and red/pink representing high relative force. The desktop’s right side shows the same color-coded data in a 3-D columnar view. This data then can be interpreted and applied to either the maxillary or mandibular teeth/prostheses to make measured occlusal force corrections. Note the right side of the arch demonstrates 71% of total force with only 29% on the left side, whereas 50% right/50%
left is desirable. The low total left side force results from the implant prosthesis having no occlusal contact. Although this may extend the life of the prosthesis, this author prefers the prosthesis to be functional.

Case 2
The second case also details an implant prosthesis replacing tooth No. 19 (Figures 4 and 5). Despite the patient being a smoker with potential complications, the implant option was the patient’s desire. In this case, a 4.7-mm diameter, 10-mm length Legacy 3 implant was placed. Following crown cementation, a T-Scan movie frame of the patient at 42.66% of total force shows most of that force is on the implant prosthesis (Figure 6). Of more concern is that the high force is applied earlier to the implant than to the adjacent teeth. When played forward approximately 0.02 seconds, the movie shows the implant prosthesis is still subject to most of the force (Figure 7). Finally, when the movie is advanced forward another 0.03 seconds, the adjacent teeth absorb more of the applied occlusal force (Figure 8).

This patient’s unperceived applied early high force will subject the implant prosthesis to repeated high stress, likely resulting in potential complications (abutment loosening/fracture, screw loosening/fracture and/or peri-implantitis including bone loss). However, with objective occlusal measurement, the force can be controlled with occlusal adjustments performed on the implant crown. Following adjustments, a new movie demonstrated the anterior and posterior teeth adjacent to the implant received the initial force loading (Figure 9). When the movie was advanced 0.10 seconds more to the terminal occlusal load (Figure 10), the teeth anterior and posterior to the implant demonstrate higher force. This higher force on the adjacent teeth to the implant prosthesis, with the later implant loading, is termed by this author as “cradling.”

Case 3
The third case represents a variation of where the implant prosthesis is in a terminal position

Figure 13. Still frame of the T-Scan movie. Note the teeth anterior to the implant prosthesis begin to absorb the occlusal force before the implant prosthesis.

Figure 14. Advancing the movie 0.02 seconds shows an increase in force but in a “stepped” fashion with the implant still being subjected to low force.

Figure 15. Advancing the movie 0.10 seconds further shows that the force continues to be greater on the natural teeth but the implant is indeed functional. The stepped appearance of force application is evident.
within the arch, as the patient was missing both maxillary right first and second molars, and the right mandibular second molar. The tooth No. 3 implant prosthesis (Figures 11 and 12) sits in the terminal position within the arch, making “cradling” impossible. In this scenario, the author recommends a “stepped” appearance of occlusal force.

Figure 13 illustrates that the initial forces were applied to the natural teeth anterior to the implant prosthesis. Note that the maxillary canine and both premolars demonstrate force, where as of yet, tooth No. 3 has no force applied. Just 0.02 seconds later (Figure 14), the applied force in this area has increased but in a stepped fashion, with the implant demonstrating the lowest regional force. Advancing the movie 0.10 seconds further, the force continues to be greater on the natural teeth, but the implant is indeed functional (Figure 15).

DISCUSSION

Implants respond to occlusal forces differently than natural teeth. Because the cushioning effect of the periodontal ligament is absent with implants, the occlusal forces are directly transmitted to the bone surrounding the implants. According to Misch et al., methods to decrease stress on an implant prosthesis are appropriate and warranted, and the restorative dentist is most capable to address this condition. Chapman suggested that establishing an appropriate occlusion plays a vital role in the success of both the implant and the attached prosthesis.

Occlusal management with the T-Scan System can be a valuable aid in controlling occlusal force and contact timing problems that stress implant prostheses. Use of traditional nondigital occlusal indicators (patient feedback, articulating paper, shim stock, silicone bite imprints, occlusal wax) may be unreliable and cannot be quantitatively analyzed. Excessive force left in place, due to incomplete equilibration, may compromise the implant; whereas lack of occlusion, perhaps due to excessive equilibration, may reduce the implant prosthesis into a nonfunctioning space maintainer. When both the force and timing of occlusal contacts are measurably managed, an implant prosthesis can become a long-term functioning component in the patient’s occlusal scheme.

CLOSING COMMENTS

Elimination of excessive forces on implants has been deemed one of the important factors in the long-term success of implant-borne prostheses. The T-Scan technology is an invaluable tool for creating appropriate occlusal contacts following implant placement and restoration. Alternatively, articulating paper does not provide any indication of contact force or time sequencing. And, patient perception is too subjective to predictably control implant prosthesis occlusal force overload, such that adjustments made to an implant prosthesis that depend on patient “feel” may compromise the longevity of both the implant and prosthesis itself. Digital occlusal force and timing measurements afforded by the T-Scan system can help the clinician ensure that implant prosthesis insertion occlusal adjustments will create a preservational occlusal scheme, rather than a subjectively installed, potentially destructive one.

References

Technology to Control Excessive Occlusal Contact Force

Technology to Control Excessive Occlusal Contact Force

POST EXAMINATION INFORMATION

To receive continuing education credit for participation in this educational activity you must complete the program post examination and receive a score of 70% or better.

Traditional Completion Option:
You may fax or mail your answers with payment to Dentistry Today (see Traditional Completion Information on following page). All information requested must be provided in order to process the program for credit. Be sure to complete your “Payment,” “Personal Certification Information,” “Answers,” and “Evaluation” forms. Your exam will be graded within 72 hours of receipt. Upon successful completion of the post-exam (70% or higher), a letter of completion will be mailed to the address provided.

Online Completion Option:
Use this page to review the questions and mark your answers. Return to dentalcetoday.com and sign in. If you have not previously purchased the program, select it from the “Online Courses” listing and complete the online purchase process. Once purchased the program will be added to your User History page where a Take Exam link will be provided directly across from the program title. Select the Take Exam link, complete all the program questions and Submit your answers. An immediate grade report will be provided. Upon receiving a passing grade, complete the online evaluation form. Upon submitting the form, your Letter of Completion will be provided immediately for printing.

General Program Information:
Online users may log in to dentalcetoday.com any time in the future to access previously purchased programs and view or print letters of completion and results.

This CE activity was not developed in accordance with AGD PACE or ADA CERP standards. CEUs for this activity will not be accepted by the AGD for MAGD/FAGD credit.

POST EXAMINATION QUESTIONS

1. Implant deosseointegration and material failures have been attributed to excessive occlusal loading to dental implants and the prosthesis.
 a. True b. False
2. Dr. Carl Misch stated that appropriate timing and directional force loading on an implant-supported prosthesis aids in a desirable and physiologic outcome.
 a. True b. False
3. Several investigators feel that bacterial infection is not a factor in implant failures, although occlusion is recognized as a co-factor.
 a. True b. False
4. Leung et al described that an association exists between excessive occlusal forces and bone loss, and suggested that the bone loss may reverse when the occlusion is corrected.
 a. True b. False
5. A 1995 study by Hämmerle indicated that a patient’s perception of occlusal contact force on an implant-supported prosthesis is 2 times less reliable than when perceiving forces on natural teeth.
 a. True b. False
6. It has been shown that implant-retained prostheses move more than natural teeth.
 a. True b. False
7. In an effort to prevent excessive forces from being applied to an implant prosthesis, Kerstein and Kirveskari proposed that a quantifiable time (and force) delay be implemented occlusally to allow the natural teeth to occlude in advance of the implant prosthesis.
 a. True b. False
8. T-Scan recordings provide the restorative dentist with a precise means of determining the time order of the relative contact forces, as they evolve sequentially on an implant prosthesis and the surrounding natural teeth.
 a. True b. False
Technology to Control Excessive Occlusal Contact Force

PROGRAM COMPLETION INFORMATION

If you wish to purchase and complete this activity traditionally (mail or fax) rather than online, you must provide the information requested below. Please be sure to select your answers carefully and complete the evaluation information. To receive credit you must answer at least 6 of the 8 questions correctly.

Complete online at: dentalctoday.com

TRADITIONAL COMPLETION INFORMATION:

Mail or fax this completed form with payment to:

Dentistry Today
Department of Continuing Education
100 Passaic Avenue
Fairfield, NJ 07004
Fax: 973-882-3622

PAYMENT & CREDIT INFORMATION:

Examination Fee: $40.00 Credit Hours: 2

Note: There is a $10 surcharge to process a check drawn on any bank other than a US bank. Should you have additional questions, please contact us at (973) 882-4700.

I have enclosed a check or money order.

My credit card information is provided below.

American Express Visa MC Discover

Please provide the following (please print clearly):

Exact Name on Credit Card

Credit Card # Expiration Date

Signature

PERSONAL CERTIFICATION INFORMATION:

Last Name (PLEASE PRINT CLEARLY OR TYPE)

First Name

Profession / Credentials License Number

Street Address

Suite or Apartment Number

City State Zip Code

Daytime Telephone Number With Area Code

Fax Number With Area Code

E-mail Address

ANSWER FORM: VOLUME 35 NO.1 PAGE 112

Please check the correct box for each question below.

1. a. True b. False

2. a. True b. False

3. a. True b. False

4. a. True b. False

5. a. True b. False

6. a. True b. False

7. a. True b. False

8. a. True b. False

PROGRAM EVALUATION FORM

Please complete the following activity evaluation questions.

Rating Scale: Excellent = 5 and Poor = 0

Course objectives were achieved.

Content was useful and benefited your clinical practice.

Review questions were clear and relevant to the editorial.

Illustrations and photographs were clear and relevant.

Written presentation was informative and concise.

How much time did you spend reading the activity and completing the test?

What aspect of this course was most helpful and why?

What topics interest you for future Dentistry Today CE courses?

This CE activity was not developed in accordance with AGD PACE or ADA CERP standards. CEUs for this activity will not be accepted by the AGD for MAGD/FAGD credit.