The Complete Digital Workflow in Implant Dentistry

This article discusses the complete digital workflow in implant dentistry that streamlines the process for achieving the correct prosthetic restorative position prior to implant placement in order to ensure long-term implant success.

Digital technology can reshape businesses’ and society’s ways of thinking. Initially, there can be a short-term disruption of learning while a new technology and workflow are implemented into a business, but, overall, the long-term gains should be the goal to be focused upon. When dentists first started placing implants, it was protocol to place the implant where adequate bone was located, which often created prosthetic problems. Clinicians quickly shifted to being prosthetically driven with implant placement, whereby the end result is planned first.1,2 It was first determined where the crown or prostheses needed to be located, followed by what series of steps was necessary to achieve an optimal final result. The correct prosthetic restorative position allowed for proper occlusion, function, and long-term dental implant success.2

The complete digital workflow allows clinicians to digitally streamline this process and predictably place an implant where it needs to be prosthetically placed.3 This digital workflow creates greater ease of prosthetic restorability. It provides clinicians the means to plan, arrange treatment, place implants, and complete cases more predictably and as efficiently as possible.

Envision a Rubik’s Cube with one side having unique colors and words on each box. One says CBCT; one says intraoral scanner; and others say 3-D printer, guided surgery, immediate milled provisional, surgical guide, CAD/CAM software, implant planning software, digital radiography, temporary abutment, customized gingival former, milled zirconia restoration, etc. It looks like a rainbow of colors and words without any meaning, but as we turn each piece and learn more about these techniques, the colors become one and the words start making sense. The digital workflow becomes clear.

When looking at the complete digital workflow for implant dentistry, there are several options available to the clinician. The most important part of this process is the armamentarium. The center of the digital wheel is an intraoral scanner. With many scanners available on the market, clinicians should focus on one that is an open platform, provides HD-quality images, does not require spray-on powder to scan,4 has no pay-per-click fees, provides a degree of accuracy greater than conventional techniques,4,5 and is portable. Next, using or having access to an in-office cone beam computed tomography (CBCT) scanner is also paramount to digital workflow. The CBCT scan, with its primary and secondary 3-D reconstructions, allows the viewing of a patient’s bony anatomy before the patient is taken to surgery. It is crucial in planning implant placements.6 The machines available today have high resolution and several different views available, so the amount of radiation given to patients is limited.7

Digital software is the next component of digital workflow. There are several types of digital planning software on the market. The software will typically take the DICOM (digital imaging and communications in medicine) files from the CBCT scanner and merge them with the stereolithography (STL) files from the intraoral scanners and allow surgical guide planning;7 as well as abutment and crown design and milling.8 Last on the list of equipment is a 3-D printer. Whether one chooses to use the services of an outside third party or have a 3-D printer in the office, the 3-D printers now available allow for surgical guide and crown fabrication, as well as the ability to mill abutments, bars, and zirconia crowns with degrees of accuracy that surpass those of analog techniques.

There are many options for integrating digital workflow into implant dentistry. The first option is guided surgery. As mentioned previously, implant placement is prosthetically driven in terms of planning. The proper position of crowns must be planned in order to allow patients to function in a...
A patient presents with a horizontal fracture of his maxillary left lateral incisor. A 69-year-old male presented for the extraction of his mandibular right second premolar, mandibular right first molar, mandibular right second molar, and mandibular right third molar (Figure 8). Upon presentation, his past medical history was significant for glaucoma. He had no known allergies and was taking Tamsulosin and Lumigan medications and 81 mg of aspirin. The patient complained of occasional pain and swelling from his carious and non-restorable dentition previously noted. An oral examination was performed along with a panoramic radiograph.

After consultation with his restorative dentist, the plan was for the replacement of his mandibular right second premolar and mandibular right first and second molars with an implant-supported restoration. The surgical and prosthetic plan was to extract the above noted teeth and bone graft sites for teeth Nos. 29, 30, and 31. After 4 months of healing, a guided surgical implant placement would be performed. Following integration of the endosseous implants, digital intraoral impressions and the fabrication of abutments and crowns were planned.

The patient was taken to the surgical suite, where intravenous anesthesia was induced and maintained in a balanced technique. Local anesthesia was obtained with 144 mg 4% Articaine 1:100,000 epinephrine, placed in an infiltrative fashion. An intrasulcular incision was performed, minimal flaps were reflected, and teeth were sectioned and removed in an atraumatic fashion. Any residual granulation tissue was curetted from the sockets. Miner-Oss (BioHorizons) 50/50 cortical/cancellous bone was placed in the involved sockets, and a non-resorbable membrane (Cytoplast [Osteogenics]) was placed and tucked under the minimal flaps both buccally and lingually. Next, 3-0 polytetrafluoroethylene (PTFE) sutures were placed in an interrupted fashion, affording non-primary closure of the wounds. This author prefers the use of non-resorbable membranes in this situation to help develop a greater amount of attached or keratinized gingiva for second-stage tissue development (Figure 9). The sutures were removed in 2 weeks, and the membranes were removed one month after the surgery.

The areas were allowed to heal for approximately 4 months, and then a CS 3600 intraoral scanner (Carestream Dental) was used to perform a digital intraoral scan, and CBCT images were obtained (CS 9300 [Carestream Dental]) (Figures 10 and 11). The DICOM file of the CBCT scan and the STL file of the intraoral scan were sent to Implant Concierge (San Antonio, Texas), and implant placement in the mandibular right second premolar and the first and second molar sites was planned using coDiagnostix® Implant Planning Software (Dental Wings) (Figure 12). The STL file was sent to the author's office, and the in-office 3-D printer (Form 2 [Formlabs]) was used to print the

CASE REPORT

A 69-year-old male presented for the extraction of his mandibular right second premolar, mandibular right first molar, mandibular right second molar, and mandibular right third molar (Figure 8). Upon presentation, his past medical history was significant for glaucoma. He had no known allergies and was taking Tamsulosin and Lumigan medications and 81 mg of aspirin. The patient complained of occasional pain and swelling from his carious and non-restorable dentition previously noted. An oral examination was performed along with a panoramic radiograph.

After consultation with his restorative dentist, the plan was for the replacement of his mandibular right second premolar and mandibular right first and second molars with an implant-supported restoration. The surgical and prosthetic plan was to extract the above noted teeth and bone graft sites for teeth Nos. 29, 30, and 31. After 4 months of healing, a guided surgical implant placement would be performed. Following integration of the endosseous implants, digital intraoral impressions and the fabrication of abutments and crowns were planned.

The patient was taken to the surgical suite, where intravenous anesthesia was induced and maintained in a balanced technique. Local anesthesia was obtained with 144 mg 4% Articaine 1:100,000 epinephrine, placed in an infiltrative fashion. An intrasulcular incision was performed, minimal flaps were reflected, and teeth were sectioned and removed in an atraumatic fashion. Any residual granulation tissue was curetted from the sockets. Miner-Oss (BioHorizons) 50/50 cortical/cancellous bone was placed in the involved sockets, and a non-resorbable membrane (Cytoplast [Osteogenics]) was placed and tucked under the minimal flaps both buccally and lingually. Next, 3-0 polytetrafluoroethylene (PTFE) sutures were placed in an interrupted fashion, affording non-primary closure of the wounds. This author prefers the use of non-resorbable membranes in this situation to help develop a greater amount of attached or keratinized gingiva for second-stage tissue development (Figure 9). The sutures were removed in 2 weeks, and the membranes were removed one month after the surgery.

The areas were allowed to heal for approximately 4 months, and then a CS 3600 intraoral scanner (Carestream Dental) was used to perform a digital intraoral scan, and CBCT images were obtained (CS 9300 [Carestream Dental]) (Figures 10 and 11). The DICOM file of the CBCT scan and the STL file of the intraoral scan were sent to Implant Concierge (San Antonio, Texas), and implant placement in the mandibular right second premolar and the first and second molar sites was planned using coDiagnostix® Implant Planning Software (Dental Wings) (Figure 12). The STL file was sent to the author's office, and the in-office 3-D printer (Form 2 [Formlabs]) was used to print the

CASE REPORT

A 69-year-old male presented for the extraction of his mandibular right second premolar, mandibular right first molar, mandibular right second molar, and mandibular right third molar (Figure 8). Upon presentation, his past medical history was significant for glaucoma. He had no known allergies and was taking Tamsulosin and Lumigan medications and 81 mg of aspirin. The patient complained of occasional pain and swelling from his carious and non-restorable dentition previously noted. An oral examination was performed along with a panoramic radiograph.

After consultation with his restorative dentist, the plan was for the replacement of his mandibular right second premolar and mandibular right first and second molars with an implant-supported restoration. The surgical and prosthetic plan was to extract the above noted teeth and bone graft sites for teeth Nos. 29, 30, and 31. After 4 months of healing, a guided surgical implant placement would be performed. Following integration of the endosseous implants, digital intraoral impressions and the fabrication of abutments and crowns were planned.

The patient was taken to the surgical suite, where intravenous anesthesia was induced and maintained in a balanced technique. Local anesthesia was obtained with 144 mg 4% Articaine 1:100,000 epinephrine, placed in an infiltrative fashion. An intrasulcular incision was performed, minimal flaps were reflected, and teeth were sectioned and removed in an atraumatic fashion. Any residual granulation tissue was curetted from the sockets. Miner-Oss (BioHorizons) 50/50 cortical/cancellous bone was placed in the involved sockets, and a non-resorbable membrane (Cytoplast [Osteogenics]) was placed and tucked under the minimal flaps both buccally and lingually. Next, 3-0 polytetrafluoroethylene (PTFE) sutures were placed in an interrupted fashion, affording non-primary closure of the wounds. This author prefers the use of non-resorbable membranes in this situation to help develop a greater amount of attached or keratinized gingiva for second-stage tissue development (Figure 9). The sutures were removed in 2 weeks, and the membranes were removed one month after the surgery.

The areas were allowed to heal for approximately 4 months, and then a CS 3600 intraoral scanner (Carestream Dental) was used to perform a digital intraoral scan, and CBCT images were obtained (CS 9300 [Carestream Dental]) (Figures 10 and 11). The DICOM file of the CBCT scan and the STL file of the intraoral scan were sent to Implant Concierge (San Antonio, Texas), and implant placement in the mandibular right second premolar and the first and second molar sites was planned using coDiagnostix® Implant Planning Software (Dental Wings) (Figure 12). The STL file was sent to the author's office, and the in-office 3-D printer (Form 2 [Formlabs]) was used to print the
guide. BioHorizons-manufactured tubes were placed inside the guide. The guide was processed according to the 3-D printer protocol and sterilized using an autoclave at 134°C for 3 minutes.

The patient was taken to surgery, and since adequate attached gingiva was present, a flapless approach was used for the implant placements (Figure 13). A 3.8 x 10.5-mm implant (Tapered Internal Implant System [BioHorizons]) was placed in the mandibular right second premolar area, and 4.6-x 10.5-mm implants were placed in both the mandibular first and second molar sites. All implants were placed with greater than 35 Ncm of insertional torque values, and 3-mm gingival formers were placed (Figures 14 and 15). The implants were allowed to fully integrate over the following 3 months. The patient presented back to the office. First, a periapical radiograph was obtained, confirming the maintenance of good crestal bone and no periapical radiolucencies. The healing abutments were removed, and an implant stability quotient (ISQ) reading greater than 70 ISQ on each implant was obtained, confirming good implant stability. Implant-type- and size-specific scanning bodies were placed in each implant (Figure 16). Periapical radiographs were taken to confirm proper placement. The CS 3600 was used to obtain maxillary and mandibular soft-tissue, implant, and bite scans (Figures 17 and 18). The STL files were sent to Vulcan Labs (Birmingham, Ala). Custom abutments and crowns were planned using Implant Studio software (3Shape). A model was printed, implant analogues were placed, and custom titanium abutments and zirconia crowns were milled (Figure 19). The custom titanium abutments were placed, the positions were confirmed radiographically, and the abutment screws were torqued to 30 Ncm. The zirconia crowns were inserted and cemented with Temp-Bond (Kerr) after the contacts and bite were minimally adjusted (Figures 20 and 21).

CONCLUSION
In the case presented, a complete digital workflow was performed from start to finish. There are several options available when using the digital implant workflow; this case demonstrated several of them. Once digital dentistry is integrated into a practice, it can be more predictable than analog; require less chair time and remakes, and reduce costs. Hopefully, this workflow will provide more optimal care for patients and, ultimately, increase implant referrals.

References
5. Loos R, Quasas S, Luthardt RG. Accuracy of conventional impression taking compared to intraoral digitizing. Poster presented at: Continental European and Scandinavian Divisions Meeting of the International Association for Dental Research (IADR); September 17, 2005; Amsterdam, The Netherlands.
1. Which is not part of the digital workflow armamentarium?
 a. A CBCT scanner.
 b. An intraoral scanner.
 c. An analog impression coping.
 d. Implant planning software.

2. When placing an implant, the clinician:
 a. Would like to place the implant where the bone is.
 b. Goes to the end result first, and then places the implant where the implant needs to be so the crown can be in a proper biomechanical position.
 c. Places the longest and largest implant that will fit into the space.
 d. All of the above.

3. An implant surgical guide can be fabricated alone, and the implant can be placed. Or, a temporary abutment and temporary crown can be prefabricated with the guide.
 a. The first statement is true; the second is false.
 b. The first statement is false; the second is true.
 c. Both statements are true.
 d. Both statements are false.

4. When fabricating a guided surgical guide, one must merge the DICOM file of the CBCT scan with the STL file of the intraoral scan in the implant planning software.
 a. True.
 b. False.
 c. The guide can be both planned and printed in-office.
 d. All of the above.

5. When discussing options available within a digital workflow, which is not a viable option?
 a. The fabrication of a surgical guide.
 b. The fabrication of a surgical guide with a custom healing abutment.
 c. The fabrication of a surgical guide with a temporary abutment and a provisional crown.
 d. None of the above.

6. After the implant integrates, a digital impression can be obtained by placing and scanning:
 a. A t-base abutment.
 b. A scanning body.
 c. A final crown.
 d. None of the above.

7. In the fabrication of a guided surgical guide, once the case has been planned:
 a. The surgical guide can be printed by a third party.
 b. The STL of the planned guide can be sent to an in-office 3-D printer, and the guide can be printed in-office.
 c. The STL of the planned guide can be sent to an in-office 3-D printer, and the guide can be printed in-office.
 d. None of the above.

8. A benefit of fabricating a temporary abutment and provisional crown that is placed at the time of implant placement is that it allows the sculpting of the gingival tissues and contouring of the emergence profile to begin at the time the implant is placed.
 a. True.
 b. False.

9. The complete digital workflow in implant dentistry allows for:
 a. Predictable and more exact final crown fabrication.
 b. Decreased costs associated with implant dentistry.
 c. Less chair time.
 d. All of the above.

10. In-office CBCT:
 a. Is necessary for guided surgical guide fabrication.
 b. Has a smaller footprint and fits in more offices.
 c. Provides more options in scan sizes, with less radiation.
 d. All of the above.

Complete the paper answer sheet and submit your answers for this issue’s CE examination. Answer at least 7 of the 10 questions correctly to earn 2 CE credits.

Please check the correct box for each question below.

1. [] a [] b [] c [] d
2. [] a [] b [] c [] d
3. [] a [] b [] c [] d
4. [] True [] False
5. [] a [] b [] c [] d
6. [] a [] b [] c [] d
7. [] a [] b [] c [] d
8. [] True [] False
9. [] a [] b [] c [] d
10. [] a [] b [] c [] d

Mail or fax this completed form with payment to:

Dentistry Today Department of Continuing Education,
100 Passaic Avenue, Fairfield, NJ 07004
Fax: (973) 882-3622

PAYMENT & CREDIT INFORMATION:

Examination Fee: $40.00 Credit Hours: 2.0

Note: There is a $10 surcharge to process a check drawn on any bank other than a US bank. Should you have additional questions, please contact us at (973) 882-4700.

I have enclosed a check or money order.
I am using a credit card.
My credit card information is provided below.

American Express Visa MC Discover

Please provide the following (PLEASE PRINT CLEARLY):

Exact Name on Credit Card
Credit Card Number / Security Code / Expiration Date

Signature

PERSONAL CERTIFICATION INFORMATION:

Name (PLEASE PRINT CLEARLY)
Profession / Credentials / License Number / AGD ID Number

City State Zip Code

Daytime Telephone Number With Area Code

Fax Number With Area Code

Email Address

PROGRAM EVALUATION FORM

Please complete the following activity evaluation questions.
Rating Scale: Excellent = 5 and Poor = 0

Course objectives were achieved. ________
Content was useful and benefited your clinical practice. ________
Review questions were clear and relevant to the editorial. ________
Illustrations and photographs were clear and relevant. ________
Written presentation was informative and concise. ________
How much time did you spend reading the activity and completing the test? ________
What aspect of this course was most helpful and why? ________
What topics interest you for future Dentistry Today CE courses? ________